A Robuster Scott Rank

نویسنده

  • ANTONIO MONTALBÁN
چکیده

We give a new definition of Scott rank motivated by our main theorem: For every countable structure A and ordinal α < ω1, we have that: every automorphism orbit is Σ α -definable without parameters if and only if A has a Π α+1 Scott sentence, if and only if A is uniformly boldface ∆α-categorical. As a corollary, we show that a structure is computably categorical on a cone if and only if it is the model of a countably categorical Σ 3 sentence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scott Ranks of Models of a Theory

The Scott rank of a countable structure is a measure, coming from the proof of Scott’s isomorphism theorem, of the complexity of that structure. The Scott spectrum of a theory (by which we mean a sentence of Lω1ω) is the set of Scott ranks of countable models of that theory. In ZFC + PD we give a descriptive-set-theoretic classification of the sets of ordinals which are the Scott spectrum of a ...

متن کامل

Structures in Familiar Classes Which Have Scott Rank Ω

There are familiar examples of computable structures having various computable Scott ranks. There are also familiar structures, such as the Harrison ordering, which have Scott rank ω CK 1 + 1. Makkai [12] produced a structure of Scott rank ω CK 1 , which can be made computable [10], and simplified so that it is just a tree [4]. In the present paper, we show that there are further computable str...

متن کامل

Atomic models higher up

There exists a countable structure M of Scott rank ωCK 1 where ωM 1 = ω CK 1 and where the LωCK 1 ,ω-theory of M is not ω-categorical. The Scott rank of a model is the least ordinal β where the model is prime in its Lωβ,ω-theory. Most well-known models with unbounded atoms below ωCK 1 also realize a non-principal LωCK 1 ,ω-type; such a model that preserves the Σ1-admissibility of ωCK 1 will hav...

متن کامل

Quantale-valued fuzzy Scott topology

The aim of this paper is to extend the truth value table oflattice-valued convergence spaces to a more general case andthen to use it to introduce and study the quantale-valued fuzzy Scotttopology in fuzzy domain theory. Let $(L,*,varepsilon)$ be acommutative unital quantale and let $otimes$ be a binary operationon $L$ which is distributive over nonempty subsets. The quadruple$(L,*,otimes,varep...

متن کامل

Model Theoretic Complexity of Automatic Structures (Extended Abstract)

We study the complexity of automatic structures via wellestablished concepts from both logic and model theory, including ordinal heights (of well-founded relations), Scott ranks of structures, and CantorBendixson ranks (of trees). We prove the following results: 1) The ordinal height of any automatic well-founded partial order is bounded by ω; 2) The ordinal heights of automatic well-founded re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014